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Vorticity analysis in a metachert from the Sanbagawa Belt, SW Japan 
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Alrstract-----Common tectonic features of deformed metachert include both sets of extended and shortened veins 
and quartz c-axis preferred orientation patterns. In such rocks information is also commonly available on the 
orientation and magnitude of the finite strain. These features can be used to derive two independent estimates of 
the degree of non-coaxiality during deformation. In an example from the Sanbagawa Belt, SW Japan, the two 
methods give consistent results and show that deformation was intermediate between simple and pure shear. 
Such types of progressive deformation distributed over a broad region could cause substantial subvertical 
thinning and be a significant factor in the exhumation of high P-T rocks in the region. 

INTRODUCTION 

IN THE study of deformation in ductile shear zones the 
simplifying assumption is commonly made that strain 
has accumulated by progressive simple shear. However, 
other types of steady-state progressive deformation are 
also possible. For deformation with no volume change 
three types of plane-strain steady deformation can be 
defined: pure shear, simple shear and general non- 
coaxial shear that is intermediate between the other two. 
For these types of deformation the differences in the 
type of associated flow can be described in terms of the 
degree of non-coaxiality (Malvern 1969, Elliott 1972, 
Means et al. 1980, Lister & Williams 1983, Passchier 
1986). One useful measure of this is the kinematic 
vorticity number, Wn, where Wn = 0 for pure shear, 
Wn = 1 for simple shear (Passchier 1988a,b). Defor- 
mation that does not conserve volume can be described 
in terms of an analogous quantity the kinematic dila- 
tancy number, A, as proposed by Passchier (1991). In 
this paper I shall largely restrict my discussion to two- 
dimensional flow types where A = 0 (no volume 
change). 

Wn is a measure of the instantaneous degree of non- 
coaxiality. A quantity Wm can also be defined that is a 
parameter of finite deformation (Passchier 1988a,b) and 
expresses the mean value of W~. For steady-state defor- 
mation W~ = Win. 

Two of the most important parameters for recon- 
structing the pre-deformational geometries of domains 
that have undergone progressive ductile deformation 
are Wm and the finite strain. There are many methods 
available for estimating finite strain in rocks (a review of 
this subject is given by Ramsay & Huber 1983). How- 
ever, there has been less discussion of methods for 
quantifying the degree of non-coaxiality. 

A number of potential methods for determining the 
degree of non-coaxiality of deformation have been 
suggested (Ghosh & Ramberg 1976, Ghosh 1987, 
Passchier 1988a,b, 1990a) and quantitative studies on 
the degree of non-coaxiality have used rotated rigid 

objects (Passchier 1987b, Vissers 1989, Cowan 1990) or 
the rotation and stretch of material lines (Passchier & 
Urai 1988). Quartz c-axis fabrics have also been used to 
suggest qualitatively that regions of ductile non-coaxial 
deformation departed significantly from simple shear 
(Law et al. 1984, Platt & Behrmann 1986, Schmid & 
Casey 1986). 

After a finite period of steady progressive defor- 
mation the angular separation of given material lines 
from fixed elements of the flow field (e.g. instantaneous 
stretching axes, flow apophySes) is a function of three 
variables, 

(i) the degree of non-coaxiality, Wm; 
(ii) the finite strain; and 

(iii) volume change. 
In metachert the orientation and magnitude of the finite 
strain ellipsoid can commonly be estimated from the 
shape of deformed radiolarians. The orientation of fixed 
elements of flow can be found from sets of shortened and 
stretched veins and quartz c-axis fabrics, and with an 
estimate of the volume change during deformation these 
features can be used to estimate W m. Both quartz c-axis 
fabrics and deformed veins are common elements of the 
tectonic fabric in deformed metachert, which make it a 
material well-suited for estimating Wm. 

In this paper I use an estimate of the finite strain with 
the orientation of deformed veins and the quartz c-axis 
fabric to derive two independent estimates for Wm for a 
sample of metachert. 

DESCRIPTION OF FLOW 

Instantaneous f low 

Instantaneous flow can be described in a continuous 
medium in terms of the spatial gradients in velocity. 
These are the components of the velocity gradients 
tensor, Lij (Malvern 1969, p. 147). L 0 can be factored 
into an instantaneous stretch and an instantaneous rigid- 
body rotation. The axis of the rigid-body rotation and its 
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Mohr Circle for Lij 
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Fig. 1. (a) Mohr space representation of instantaneous two-dimensional flow for W n = 0.5. Any point on the circle 
represents the instantaneous angular velocity, to, and stretching rate, k, of a particular material line. W = vorticity; A~ = 
flow apophyses; d i = stretching axes of flow. N.B. Material lines instantaneously parallel to these axes have an angular 
velocity with respect to the flow apophyses and therefore rotate after a finite time; the stretching axes, however, remain 
fixed with respect to the flow apophyses. (b) Instantaneous flow parameters in real space corresponding to (a); xi = 

reference frame; the vorticity vector, w, lies perpendicular to the page. 

magnitude are described by the vorticity vector, w 
(Malvern 1969, p. 147). In many natural examples of 
deformation the vorticity vector (parallel to the two-fold 
axis of quartz c-axis fabrics, rotated porphyroclasts, 
etc.) is subparallel to the intermediate finite strain axis. 
Under this condition deformation can be analysed in two 
dimensions in a plane perpendicular to w. 

Several different measures of the degree of non- 
coaxiality have been proposed. In this paper I shall use a 
kinematic vorticity number, Wn, where 

W, -- W/(Sl - s2) (after Passchier 1988a,b). (1) 

W is the magnitude of the vorticity vector, and sl, s 2 are 
the maximum and minimum rates of stretching. For 
deformation that conserves volume and with negligible 
stretch parallel to the vorticity vector Bin is equal to the 
vorticity number proposed by Truesdell (1954). If refer- 
ence axes are placed at 45 ° to the instantaneous stretch- 
ing axes, d I and d E (Fig. 1) then for flow that conserves 
area perpendicular to w, Sl = -s2  = S and Lij can be 
written 

(Passchier 1987a). Like any second-order tensor, Lij can 
be represented by a Mohr circle (Malvern 1969, p. 111, 
Means 1983). The Mohr circle for Lij and the corre- 
sponding flow patterns in real space is shown in Fig. 1 
(see also Lister & Williams 1983). The axes are in units 
of angular velocity, to, and stretching rate, k. A point on 
the circle represents the instantaneous stretching rate 
and angular velocity of a particular material line. The 
distance from the horizontal axis to the centre of the 
circle is equal to half the vorticity. In general there will 
be two material lines that have a zero instantaneous 

angular velocity. These lines are permanently fixed to 
two spatial lines termed flow apophyses after Ghosh & 
Ramberg (1976) and labelled A i after Passchier (1988b). 
The two material lines differ in that one is extending and 
the other shortening. In a three-dimensional symmetri- 
cal flow, where the vorticity vector lies normal to the 
flow apophyses, the extensional apophysis, A1, and the 
vorticity vector define a flow plane. The angle between 
the flow apophyses, 0, is simply related to Wn by 

cos  0 = W . .  (3) 

For simple shear 0 = 0 ° and for pure shear 0 = 90 °. 
The Mohr circle in Fig. 1 is for instantaneous defor- 

mation only. However, for steady-state flow the flow 
apophyses and the instantaneous stretching axes will not 
rotate with respect to the reference frame even after a 
finite time. Material lines will rotate and approach the 
extensional apophysis but will not cross it. For equal- 
area deformation the rotation of particular material 
lines, e.g. parallel to the finite strain axes, depends on 
two factors, W, and the finite strain. The next section 
will show how these factors are related. 

Finite deformation 

The position gradients tensor, Fq (also referred to as 
the deformation gradients tensor, e.g. Malvern 1969, p. 
156), operates on an infinitesimal material vector to 
associate it with a new vector in the deformed state. The 
inverse of Fij is referred to as Hq and relates particle 
positions in the deformed state back to the original 
undeformed state. Fq can be derived for steady flow by 
integration of Lq over a finite time interval. The eigen- 
vectors of the symmetrical part of Fij represent the 
principal axes of the strain ellipsoid. However unlike the 
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strain tensor, Fij also contains information about the 
rotational component of finite deformation. 
Fq can be written: 

0 < W . < I  

cosh {~¢/(1 - wE) • St} 
Fii--- (1 - Wn) 

sinh {X/(1 - WZn) • St} 
X/(1 - W~n) 

(1 + Wn) . 
- -  2 stun (~/(1 - WZ~)-St} 
V(1 - Wn) 

cosh {X/(1 - wE). St} (4) 

W.=l 

(MacKenzie 1979, Passchier 1988a,b). These equations 
must be modified if deformation involves a change in 
area (Passchier 1988a,b, 1990a). The magnitude and 
orientation of the principal axes of strain can be deter- 
mined from the components of Fij. The finite strain ratio 
is given by: 

Rf = (F211 + F22 + F21 + F22)/2 

+ [(F21 + FIZ2 + F21 + F22) 2 - 1] 1/2, (6) 

and the orientation with respect to the reference frame 
from: 

tan 2H = 2(F~1 + F~2 + F21 Jr F22) 
(F21 _ Fa22 + F221 _ Fz22 ) (7) 

MacKenzie (1979). 
Alternatively calculations can be performed by rep- 

resenting Fq as an off-axis Mohr circle in stretch space 
(Means 1982, Bobyarchick 1986, Passchier 1988a,b). 
Steady-state accumulation of strain is represented by a 
series of circles with increasing radii (Fig. 2). The centre 
of the circle shifts during deformation and follows a path 
that is dependent on W,. The orientations of the flow 
apophyses and the instantaneous stretching axes for 
every instant of deformation remains constant with 
respect to the reference frame. This Mohr circle has a 
number of properties that I shall use in the following 
analysis. 

The circle is plotted in stretch space and the polar co- 
ordinates of any point on the circle represent the stretch 
and rotation of a particular material line (Means 1982). 
The angles within the Mohr circle for Fq refer to the 
undeformed state. The angle between lines in the de- 
formed state cannot be read directly from this Mohr 
construction but can be calculated from the original 
angle and the difference between the amounts of ro- 
tation of the two lines. The position and size of the circle 
can be defined by three quantities R, T and Q (Fig. 2). 
For two-dimensional deformation that conserves area 
the radius of the Mohr circle, R, is half the difference 
between the maximum and minimum stretches, which SG 14:3-B 

can be expressed in terms of the ellipticity of the strain 
ellipse as: 

R = ½ ( R  I/2 - R f  1/2) (Passchier 1988a,b). (8) 

The distance of the centre of the circle from the origin, 
T, is the average stretch and is given by: 

T _  1~ r,1/2 R f  1/2) - ~taf + (Passchier 1988a,b). (9) 

T and R can also be modified to take into account 
changes in area during deformation (Passchier 1988a,b, 
1990a). For A = 0 two of the parameters needed to 
construct the Mohr circle, R and T, are defined by the 
finite strain. The third parameter is the distance of the 
centre of the circle from the horizontal axis, Q (Fig. 2). 
This distance can be defined in terms of the angle 
through which the material line now parallel to the axis 
of maximum finite extension has rotated with respect to 
the reference frame, ~, by the equation, 

Mohr Circle for Fij 
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{1"e21 Lb2 a. 

l W n = 0 0 1  

A,~ z 

b. 
Fig. 2. (a) Mohr circle for F/j representing finite deformation in stretch 
space. The polar co-ordinates of a point on the circle give the stretch 
and rotation of a material line. The size and position of the circle can be 
defined by three parameters: the distance of the centre of the circle 
from the origin (T); the radius of the circle (R); and the distance of the 
centre of the circle from the horizontal axis (Q). The.principal axes of 
finite strain lie on a diameter that makes an angle q~ with the horizontal 
axis. Lines of zero finite rotation are located at the intersection of the 
circle with the horizontal axis. These lines are parallel to the flow 
apophyses, Ai, at every instant for steady flow. Material lines parallel 
to the instantaneous stretching axes (d;) and the axes of no instan- 
taneous longitudinal strain at the beginning of deformation (/-,oi) lie on 
diameters parallel to the horizontal and vertical axes, respectively. (b) 
Progressive deformation at a fixed value of Wn can be represented by a 
series of Mohr circles for Fq with progressively increasing diameters. 
The angle between A1 and A2 remains fixed. The values of R and T 
increase according to equations (8) and (9). Three series of circles are 
shown for progressive steady deformation with values of Wn = 0.0, 0.5 

and 1.0. 
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Q = Tsin ~b (Fig. 2). (10) 

The mean vorticity number is related to these para- 
meters by the equation, 

W m = Q / R  (Passchier 1988a,b). (11) 

An analogous treatment of finite deformation is possible 
using Mohr circles for the reciprocal stretch tensor, Hij 
(Passchier 1990a,b, Treagus 1990). 

The above relationships are used to construct various 
Mohr circles from fabric elements in metachert samples. 
These allow limits to be placed on the degree of non- 
coaxiality of the deformation. a .  lmm 

I,- I 

SAMPLE DESCRIPTION 

Several samples of deformed metachert were col- 
lected from the southernmost part of the Sanbagawa 
Belt in SW Japan (Wallis & Banno 1990) where it is 
associated with metabasic material. Fine-grained law- 
sonite has been reported from metapelite at slightly 
deeper structural levels (Watanabe & Kobayashi 1984). 
The chert consists of quartz layers up to 5 mm thick 
separated by very thin layers of finely disseminated 
opaques and a small amount of epidote. 

The chert is lineated and has a foliation subparallel to 
bedding. In thin section the mesoscopic lineation can be 
seen to coincide with both a crenulation and a stretching 
lineation. The stretching is defined by the elongation of 
individual quartz grains and deformed radiolarians (Fig. 
3a). However a secondary oblique grain-shape fabric is 
locally well developed, and on average makes an angle 
of 10 ° with the main foliation. Similar fabrics have been 
described elsewhere in quartz-rich tectonites that have 
undergone non-coaxial deformation (e.g. Law et al. 
1986). The sense of obliquity of the fabric suggests a top- 
to-the-east sense of shear. The deformed radiolarians 
are good strain markers (e.g. Toriumi 1982). The aver- 
age grain size of the quartz in the matrix is approxi- 
mately 30/tm. The radiolarians consist of an aggregate 
of slightly coarser-grained quartz (60-100/tm). The 
quartz has an undulose extinction and sutured grain 
boundaries indicative of deformation by intracrystalline 
plastic processes (Bell & Etheridge 1973, White 1976). 
Epidote is fractured and pulled apart in the direction of 
stretching showing that a large part of the ductile defor- 
mation took place after the main growth of metamorphic 
minerals (Fig. 3b). 

The foliation is cut by numerous quartz veins and both 
boudinaged and folded veins are present. The axial 
planes of the folds are subparallel to the foliation. In thin 
section the quartz grains within the veins are commonly 
flattened and stretched parallel to the grains in the 
matrix. Quartz fibres are locally preserved within the 
veins, however, they show strong undulose extinction 
and cannot be used to determine the orientation of the 
instantaneous stretching axes. These observations show 
that the veins formed during or before the main ductile 
features of the sample. Shortened veins typically have an 
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Fig. 3. Sketches from photomicrographs parallel to stretching direc- 
tion of the metachert sample, MB4. (a) Deformed quartz veins and the 
outlines of deformed radiolarians are shown. Narrow lines are layers 
of fine-grained opaques parallel to the foliation. (b) Pull-apart fractur- 
ing of epidote (ep) parallel to the stretching lineation shows that the 

main deformation took place after the peak metamorphism. 

arc-length to thickness ratio <8,  which suggests there 
was a low viscosity contrast between the veins and the 
matrix. Shortening of the veins was therefore probably 
accommodated by thickening as well as folding. Stylo- 
lites are locally present oriented roughly parallel to the 
foliation and these probably represent the source for the 
vein-fill material. 

PRACTICAL DETERMINATION OF W m 

Finite strain 

Finite strain was estimated from the shape of de- 
formed radiolarians using an Rf /~  plot and the net 
designed by De Paor (1988). Three thin sections were 
made from mutually perpendicular sections: (i) perpen- 
dicular to the stretching lineation; (ii) parallel to the 
lineation and perpendicular to the foliation; and (iii) 
parallel to foliation. The results show that within the 
accuracy of measurement the maximum and minimum 
principal axes of finite strain coincide with the meso- 
scopic fabric elements of lineation and normal to the 
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foliation. The results give a strain ratio of X/Z = 3.4-3.6 
(=Re) and Y/Z--1.6-1.7 (95% confidence limits), 
which deviates slightly from plane strain and lies in the 
constrictional field (Fig. 4). This slight deviation away 
from plane strain may explain the formation of the 
microcrenulations approximately parallel to the stretch- 
ing lineation. 

The finite strain can be combined with the quartz c- 
axis fabric to estimate Wm (see later). It is also important 
in the analysis of deformed veins for helping to constrain 
the possible values for Wm and A. The distribution of 
deformed veins is studied first because this allows a test 
of the assumption that deformation was not associated 
with significant area change in the plane perpendicular 
to the vorticity vector. 

Distribution of deformed veins 

During progressive deformation material lines will 
rotate towards the extensional apophysis. During this 
rotation the lines may undergo both shortening and 
extension. Material line markers such as deformed veins 
and dykes have been used for strain analysis (Talbot 
1970) and a qualitative assessment of the non-coaxiality 
of deformation (Hutton 1982, Passchier 1986). Passchier 
(1990a) has further shown that it is sufficient to know the 
orientation of the boundaries between domains of 
material lines with different stretch histories to deter- 
mine all the parameters of finite deformation, i,e. Win, 
sense of vorticity, finite strain and volume change. In 
most cases the orientation of material lines can be 
measured with a high degree of accuracy which makes 
this a potentially very useful technique for kinematic 
analyses. 

The boundaries between material line sectors with 
different stretch histories correspond to the orientation 
of material lines that lie parallel to the lines of no 
instantaneous longitudinal strain at the onset of defor- 

3 
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Fig. 4. Flinn plot of  axial ratios of  finite strain ellipsoid based on 
measurements  of  deformed radiolarians. The  size of  the  mark  gives an 
est imate of  the two s tandard deviation error. Finite strain deviates 
slightly from plane strain in this sample and lies in the constrictional 

field, with Rf = 3.4-3.6. 
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Fig. 5. Three  diagrams illustrating the effect of  W n on the distribution 
of sectors of  material  lines with different stretch histories. These  
diagrams are for three types of steady flow with W m =  Wn = 0:0, 0.5 
and 1.0, Rf = 3.5; and A = 0. These  diagrams are drawn with respect 
to the lines of  zero ins tantaneous shortening during the final increment 
of deformation,  Lai. (1 + el) = max imum finite extension axis, Lbi = 
position after deformation of the  material lines that were initially 
parallel to lines of zero instantaneous shortening.  S = shortened lines, 
S + E = shortened and extended lines, E = extended lines. The 
position of the lines of zero instantaneous rotation or flow apophyses,  

mi, are also shown. 

mation and at the final increment of deformation (Pass° 
chier 1990a,b). These four lines are labelled tai and Lbi 
after Passchier (1990a). The subscripts 'a' and 'b' refer to 
'after' and 'before' deformation. 

The influence of the degree of non-coaxiality on the 
distribution of sectors of material lines with distinct 
stretch histories can be illustrated by considering three 
different types of two-dimensional equal-area defor- 
mation (Fig. 5). The boundary between material lines 
that have only undergone shortening and those that have 
undergone shortening followed by extension is the 
material line that is parallel to the lines of no instan- 
taneous longitudinal strain during the final increment of 
d e f o r m a t i o n ,  Lai. The boundaries between lines with a 
history of shortening followed by extension and those 
which have only experienced extension lies parallel to 
t b i  (Passchier 1990a,b). Lbi progressively rotates away 
from Lai with increasing strain up to a value that is a 
function of the degree of non-coaxiality. During pro- 
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gressive pure shear, i.e. Wn = 0, Lbi will rotate sym- 
metrically towards the extension direction. In contrast 
during progressive simple shear, i.e. Wn = 1, Lbl is fixed 
to the shear plane while Lb2 progressively rotates. This 
produces a strong asymmetry in the sectors with distinct 
stretch histories (Fig. 5). For intermediate types of 
progressive deformation, 0 <W,  < 1 the distribution of 
sectors with different stretch histories is asymmetric and 
intermediate between pure and simple shear. The orien- 
tations of these boundaries are a function of Wn and 
finite strain (Fig. 5). 

Deformed veins of the metachert samples were 
measured in a section perpendicular to the Y axis of the 
strain ellipsoid. This direction is parallel to the two-fold 
axis of the quartz c-axis fabric (see later) and therefore 
also parallel to the vorticity vector. The veins can be 
separated into those which have only been shortened; 
those which have undergone shortening followed by 
extension; and those which only show indications of 
extension (Fig. 6). However, the distribution of sets of 
deformed veins will not exactly correspond to sectors of 
material lines with different stretch histories (Talbot 
1970, Passchier 1990a). Veins that passed from the 
shortening to the extensional field may first begin to 
unfold before showing any signs of necking or boudinage 
and veins that have first been shortened may completely 
unfold so no evidence remains of the earlier shortening 
history. Unfolding is likely to be most complete when 
there is a high competency contrast between the vein 
and matrix materials. In the sample material geometries 
of folded veins suggest a very low competency contrast 
between matrix and vein material (see above) and the 
effect of unfolding is, therefore, likely to be minimal. 

A plot of the distribution of deformed veins has an 
asymmetric distribution of vein sectors (Fig. 6) that 
indicates a top-to-the-east sense of shear, which is con- 
sistent with the microstructural evidence. The boundary 
between veins that have been shortened only and those 
that have been shortened and then extended can be 
defined to within a few degrees. If the effect of unfolding 
is small (a few degrees) then these boundaries will lie 
close to Lbl and Lb2, the two lines of zero instantaneous 
shortening during the final increment of deformation. 

oo o o ooo o oo o ~ L . , / /  

S °°°  . / ~  / 
A - S+E ~ . .~+  E ~ ' ~  Lb' 

Fig. 6. Distribution of deformed veins in the  metachert .  The  data are 
compiled from three separate samples.  Open  circles = shor tened 
veins, black dots = shor tened and extended veins, open triangles = 
extended veins. The  distribution of veins with different stretch histor- 
ies places constraints on the possible location of La /and  Lbi. The data  
are plotted with respect to the foliation. A n  ellipse of Rf = 3.5 shows 

the est imated finite strain in the matrix. 

Observation agrees closely with the prediction that for 
deformation with no area change these boundaries 
should be perpendicular (Fig. 6). Some veins that only 
show evidence for extension plot in the field where other 
veins have undergone an earlier phase of shortening. 
This is probably because a certain amount of initial 
shortening will be accommodated by thickening of the 
veins which is not easily recognized. 

Although the orientations of Lai and Lbi cannot be 
directly determined from the vein arrays, limits can be 
placed on their orientations. In this sample there is also a 
limit on the possible finite strain that the deformed veins 
represent. The limits on the orientations of Lai, Lb~ and 
the finite strain are: 

Lal/~ La2 < 95 °, 

Lbl A Lb2 < 32 ° 
and 

Re< 3.6. 

There is also a degree of uncertainty in the orientation of 
La/with respect to Lb/, which depends on the angles 
taken for Zal A La2 and Lbl A Lb2. With the above 
values a range of possible Mohr circles for Fij or Hij can 
be constructed following the procedure described in 
Passchier (1990a). These circles give upper and lower 
limits for the parameters of finite deformation, i.e. A, 
Wm, Rf. 

Some of the constraints can be illustrated using Mohr 
circles for the maximum strain estimated in the sample, 
Rf = 3.6, and zero area change, A = 0 (Fig. 7). The 
angle between Lal/x, La 2 is simply related to A, the 
kinematic dilatancy number by the equation, 

cos (Lal A La2 ) = A (Passchier 1990a, 1991). 

An angular separation of Lax/~ La2 less than 90 ° implies 
an area increase. The data from the deformed vein sets 
give an upper limit of Lal A La2 < 95 ° for the sample. A 
lower limit can also be found using the constraints 
imposed by the finite strain and the orientation of the 
extensional veins. The Mohr circles in Fig. 7 are drawn 
for A = 0 and Re = 3.6. Any increase in Lal/~ La2 re- 
quires a finite strain greater than that measured in the 
sample to account for the relatively narrow extensional 
sector. A decrease in the extensional sector, Lbl/~ Lb2, 
is likewise only possible for higher finite strain. This 
therefore implies a lower limit of Lal/~ La2 > 90 °- The 
range of possible origins shown in Fig. 7 stems from the 
uncertainty about the orientation of Lai with respect to 
Lbi. A second set of Mohr circles can be plotted that 
include the possibility of a small amount of area de- 
crease. 

From the above analysis the ranges of possible values 
of the deformation parameters are: 

0 < A < -0.09, 

0.51 <Wm < 0.70 

3.4 < Rf < 3.6. 

The angle between the horizontal axis and the centre of 
the Mohr circle in Fig. 7, ¢, ranges from 17 ° to 24 °. This 
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is used later to compare  with the est imate of  Wm f rom 
the quar tz  c-axis fabric. 

The  results o f  this analysis show that  de format ion  was 
not  associated with any significant area change in the 
plane of  analysis (less than 1%).  The  finite strain esti- 
ma ted  f rom the de fo rmed  veins has the same range as 
that  es t imated f rom the matrix. This suggests the veins 
(and stylolites) fo rmed  before  the onset  of  ductile defor-  
mat ion  and suffered the same deformat ion  as the matrix. 
In  all cases deformat ion  is non-coaxial  and shows a 
significant depar tu re  f rom simple shear.  

Mohr Circle for Fij 

Lbl 

..y" ..-" 

Fig. 7. A range of possible Mohr circles for equal area deformation determined from the distribution of deformed veins. The 
plotting technique follows Passchier (1990a). Mohr circles for both the stretch tensor, F/j, and the reciprocal stretch tensor, 
Hij, are shown. These circles are plotted using the maximum estimate of finite strain: Rf = 3.6. The angle between L~I/~ 
is set at 90 ° (180 ° in Mohr space) implying no area change. This is a lower limit for the sample because any decrease in this 
angle, i.e. an area increase, requires a higher finite strain than that measured. An upper limit of 95 ° for Lal /~ La2 is given by 
the deformed vein sets (Fig. 6). Other Mohr circles can be drawn including this small degree of area loss, however, the 
maximum and minimum estimates for W m are derived if the area change is zero. The parameters of the Mohr circles shown 
in this figure are therefore, Rf = 3.6, A = 0, 0.51 < W m < 0.70. The angle ~ is used later to compare these results with the 
quartz c-axis data; 17 ° < ~ < 24 °. N.B. The estimate of finite strain from deformed radiolarians suggests a minor departure 
from plane strain in the constrictional field. Finite strain with Y < i causes an area increase in the X-Z plane, However, the 
analysis of deformed veins constrains the area change in this plane to be less than or equal to zero. These two observations 
imply deformation included small amounts of both constrictional strain and volume decrease. This has no effect on the 

estimates of Wrn. 

Quartz c-axis fabrics 

apophysis ,  A1, and the line in the undeformed state that  
is now parallel to the line of  max imum elongation.  This 
angle is equal  to fl plus the ro ta t ion of  the flattening 
plane ~b (Fig. 9). In  Fig. 9, a is the sum of  the two acute 
angles B A C  and A C B .  B A C  is defined as ~ therefore  
A C B  must  be equal  to  ft. 

For  deformat ion  that  conserves area the finite strain 
defines two of  the parameters  of  the M o h r  circle, i.e. its 
radius R and the distance of  the centre  f rom the origin T 

R = 0.65-0.69 f rom equat ion  (8) 

Up 
The  metacher t  has a s t rong crystal lographic prefer red  

or ienta t ion (Fig. 8). The  a symmet ry  in bo th  topo logy  
and density distr ibution with respect  to the foliation 
suggests a top- to- the-eas t  sense of  shear.  This fabric was 
con tou red  and the fabric skeleton drawn for  the central  
par t  of  the d iagram (Fig. 8). 

The  model l ing o f  Lister  & H o b b s  (1980) predicts  that  
the central  girdle of  quar tz  c-axis diagrams develops  
perpendicular  to the flow plane in bo th  simple and pure  
shear.  This predict ion is suppor ted  by the work  of  Law et 
al. (1990). Platt & B e h r m a n n  (1986) suggested that  the 
central  girdle will also form perpendicular  to the flow 
plane during general  non-coaxial  de format ion  and the 
flow path model l ing o f  Vissers (1989) supports  this 
proposi t ion.  U n d e r  this assumpt ion the angle be tween  
the perpendicular  to the central  girdle and the foliation 
is equal  to the angle be tween  the flow plane and the 
flattening plane o f  strain, ft. Fo r  A = 0 this angle is a 
funct ion of  Wn and the finite strain only. In this sample fl 
is es t imated to be 5-8  ° (Fig. 8) and can be p lot ted  on  a 
Mohr  circle as the angle A C B  as shown in Fig. 9. The  
angle A C B  can be shown to be equal  to fl by the 
following reasoning.  Let  a be the angle be tween  the flow 

E W 

Vortici ty analysis in metacher t  

MB4 300 
Fig. 8. Quartz c-axis fabric measured in the metachert based on 300 
measurements. Contoured at equal probability levels with an algor- 
ithm of Fisher and Dingle (Fisher et al. 1987). The fabric skeleton is 
drawn by joining up the peaks along crest lines (Lister & Williams 
1979). The angle between the normal to the central part of the fabric 

skeleton and the foliation is fl, with 5 ° > fl > 8 °. 
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Mohr Circle for Fij 

( 1 .e l )  A2 

Fig. 9. (a) Plot of the angle between the flow plane and axes of finite strain (fl) on the Mohr circle for F/j in stretch space. 
T = the distance from the origin to the centre of the circle, Q = the distance of the centre of the circle above the horizontal 
axis, R = the radius of the circle. See text for discussion of the relationship between fl, q~ and a. (b) The same parameters in 

real space. 

and 

T = 1.19-1.21 from equation (9). 

To find the position of the circle in stretch space the 
vertical distance from the horizontal axis must also be 
known. This can be defined in terms of ~ and T (see Fig. 
2). ~ is related to fl in the following way: 

sin (/3 + a) _ sin ~_ from the sine rule (Fig. 9). 
T R 

Substitute a = fl + q~ then after expanding and simplify- 
ing this becomes 

R sin 2fl (12) 
tan ~ = (T - R cos 2fl) 

For this sample 5 ° <  fl < 8 °. Therefore  from equation 
(12) and the previously determined values of T and R, 
12 ° < qO < 19 °. W m can then be calculated from (10) and 
(11) which gives a range for Wm of 

0.35 < W m < 0.60. 

GRAPHICAL DETERMINATION OF W m 

The above two methods give a range of possible values 
for Win. The range of values can be shown by plotting a 
number of different Mohr circles. Alternatively for 
deformation that conserves area the estimates for W m 
can be plotted on one diagram using the angle ~O. The 
radius and distance from the origin of the Mohr circle, R 
and T, are defined from the value of the finite strain. It is 
therefore possible to plot trajectories for the centres of 
Mohr circles at given values of finite strain for varying 
Wm (Passchier 1988a). To find the value of Wm a line is 
drawn from the origin at an angle ~0 to the horizontal 
axis. This line intersects a curve for the appropriate 

value of finite strain at a point that corresponds to a 
unique value of Wrn (Fig. 10). 

DISCUSSION 

Deformation of the veins and the matrix material is 
associated with very similar values for finite strain. 
Therefore,  both the quartz c-axis fabric and the de- 
formed veins probably developed throughout the period 
of ductile deformation. However,  quartz c-axis fabrics 
will be reset by dynamic recrystallization so that only the 
later parts of the deformation history are preserved. The 
consistent results for Wm using the two different 
methods indicate therefore that the degree of instan- 
taneous non-coaxiality, Wn, was not strongly time de- 
pendent.  

The estimates for W m show that deformation in the 
metachert  deviated substantially from simple shear. The 
stretch along A1 can be measured directly from the Mohr 
circle for Fij and the inverse gives the amount of thinning 
perpendicula r to the flow plane. As an example, values 
of R e = 3.5, W m = 0.5 imply a thinning of about 400 m 
for every 1 km original thickness. 

Much of the Sanbagawa Belt has undergone penetrat- 
ive deformation associated with the formation of a 
prominent stretching lineation oriented roughly parallel 
to the trend of the belt (Hara et al. 1977, 1990, Toriumi 
1982, Faure 1985, Wallis & Banno 1990). This defor- 
mation can be directly compared to the phase of defor- 
mation studied in this sample. The topology of quartz c- 
axis fabrics and other kinematic indicators suggest devi- 
ations from simple shear in higher grade parts of the 
Sanbagawa Belt (Kojima & Hide 1958, Wallis unpub- 
lished). Although these data have not yet been quanti- 
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(1,.. e)  Wn=l"O 
/ 

, ~ . _ ~  ~ 0 . 0  

0 1 (1 °e )  

Fig. 10. Graphical representation of the possible centres of Mohr circles in stretch space that arise from equal area 
progressive steady flow, i.e. W n = Win, with different vorticity numbers (after Passchier 1988a). A value of W m can be found 
from a knowledge of 0 and Re. This representation of the parameters of the Mohr circle has the advantage that several 
estimates can be plotted on the same figure and maximum and minimum estimates for Wm readily identified. Dashed line is 
for Rf = 3.5. (D = the range of estimated W m from the sets of deformed veins; (~) = the range of estimated W m from the 

quartz c-axis fabric. 

fled, they suggest that the main tectonic fabric of the 
Sanbagawa Belt developed during general non-coaxial 
shear with Wm < 1. This is opposed to the proposition of 
Faure (1985) that deformation throughout the Sanba- 
gawa Belt was by simple shear. A deformation path 
associated with Wm < 1 causes shortening perpendicular 
to the flow plane and this could be a significant factor in 
the exhumation of high P - T  rocks in this region. 

A similar vorticity analysis could be carried out in 
other areas where there are data on the finite strain and 
the orientation of certain fixed elements of the flow. 
Suitable areas might be the Cambrian quartzites of the 
Moine area in Scotland (Law et al. 1984) and the quartz- 
rich tectonites of the Betics of southern Spain (Platt & 
Behrmann 1986). 

C O N C L U S I O N S  

Deformed metachert is a potentially very useful 
material for vorticity analyses because it commonly 
contains features that allow the finite strain to be deter- 
mined as well as the orientation of certain fixed elements 
of flow. Sets of deformed veins also allow an estimate of 
the amount of volume change during deformation. The 
results from the Sanbagawa Belt suggest that defor- 
mation was roughly time constant with a significant 
departure from simple shear. High-strain deformation 
of this type could cause significant subvertical shortening 
a n d  b e  a n  i m p o r t a n t  f a c t o r  in  t h e  e x h u m a t i o n  o f  t h e  

S a n b a g a w a  B e l t .  

Acknowledgements--My thanks to Shohei Banno for introducing me 
to the area. Subir Ghosh and in particular Cees Passchier provided 
detailed reviews that together with the careful editing of Sue Treagus 
considerably helped to improve an earlier version of the manuscript. 
This work was carried out under the tenure of a Royal Society/JSPS 
fellowship. 

R E F E R E N C E S  

Bell, T. H. & Etheridge, M. A. 1973. Microstructure of mylonites and 
their descriptive terminology. Lithos 6,337-348. 

Bobyarchick, A. R. 1986. The eigenvalues of steady flow in Mohr 
space. Tectonophysics 122, 35-51. 

Cowan, D. S. 1990. Kinematic analysis of shear zones in sandstone and 
mudstone of the Shimanto belt, Shikoku, SW Japan. J. Struct. Geol. 
12,431--441. 

De Paor, D. G. 1988. R~/~b strain analysis using an orientation net. J. 
Struct. Geol. 10,323-333. 

Elliott, D. 1972. Deformation paths in structural geology. Bull. geol. 
Soc. Am. 83, 2621-2638. 

Faure, M. 1985. Microtectonic evidence for eastward ductile shear in 
the Jurassic orogen of SW Japan. J. Struct. Geol. 7, 175-186. 

Fisher, N. I., Lewis, T. & Embleton, B. J. J. 1987. StatisticalAnalysis 
o f  Spherical Data. Cambridge University Press, Cambridge. 

Ghosh, S. K. 1987. Measure of non-coaxiality. J. Struct. Geol. 9, 111- 
113. 

Ghosh, S. K. & Ramberg, H. 1976. Reorientation of inclusions by 
combination of pure and simple shear. Tectonophysics 34, 1-70. 

Hara, I., Hide, K., Takeda, K., Tsukuda, E., Tokuda, M. & Shiota, 
T. 1977. Tectonic movement in the Sambagawa Belt. In: The 
Sambagawa Belt (edited by Hide, K.). Hiroshima University Press. 

Hara, I., Shiota, K., Okamoto, K., Takeda, K., Hayasaka, Y. & 
Sakurai, Y. 1990. Nappe structure of the Sambagawa Belt. J. 
metamorph. Geol. 8,441-456. 

Hutton, D. H. W. 1982. A tectonic model for the emplacement of the 
main Donegal granite, NW Ireland. J. geol. Soc. Lond. 139, 615- 
631. 

Kojima, G. & Hide, K. 1958. Kinematic interpretation of the quartz 
fabric of triclinic tectonites from Besshi, Central Shikoku. Japan, J. 
Fac. Sci., Hiroshima Series C2, 195-226. 

Law, R. D., Casey, M. & Knipe, R. J. 1986. Kinematic and tectonic 
significance of microstructures and crystallographic fabrics within 
quartz mylonites from Assynt and Eriboll regions of the Moine 
thrust zone, NW Scotland. Trans. R. Soc. Edinb. 77, 99-125. 

Law, R. D., Knipe, R. J. & Dayan, H. 1984. Strain path partitioning 
within thrust sheets: microstructural and petrofahric evidence from 
the Moine thrust zone at Loch Eriboll, northwest Scotland. J. Struct. 
Geol. 6,477-497. 

Law, R. D., Schmid, S. M. & Wheeler, J. 1990. Simple shear 
deformation and quartz crystallographic fabrics: a possible natural 
example from the Torridon area of NW Scotland. J. Struct. Geol. 12, 
29--45. 

Lister, G. S. & Hobbs, B. E. 1980. The simulation of fabric develop- 
ment during plastic deformation and its application to quartzite: the 
influence of deformation history. J. Struct. Geol. 2,355-370. 



280 S . R .  WALLIS 

Lister, G. S. & Williams, P. F. 1979. Fabric development in shear 
zones: theoretical controls and observed phenomena. J. Struct. 
Geol. 6,617-638. 

Lister, G. S. & Williams, P. F. 1983. The partitioning of deformation 
in flowing rock masses. Tectonophysics 92, 1-33. 

MacKenzie, D. P. 1979. Finite deformation during fluid flow. Geo- 
phys. J. R. astr. Soc. 58, 689-715. 

Malvern, L. E. 1969. Introduction to the Mechanics of a Continuous 
Medium. Prentice-Hall, Englewood Cliffs, New Jersey. 

Means, W. D. 1982. An unfamiliar Mohr circle construction for finite 
strain. Tectonophysics 89, TI-T6. 

Means, W. D. 1983. Application of the Mohr-circle construction to 
problems of inhomogeneous deformation. J. Struct. Geol. 5, 279- 
286. 

Means, W. D., Hobbs, B. E., Lister, G. S. & Williams, P. F. 1980. 
Vorticity and non-coaxiality in progressive deformations. J. Struct. 
Geol. 2,371-378. 

Passchier, C. W. 1986. Flow in natural shear zones--the consequences 
of spinning flow regimes. Earth Planet. Sci. Lett. 77, 70-80. 

Passchier, C. W. 1987a. Efficient use of the velocity gradients tensor in 
flow modelling. Tectonophysics 136, 159-163. 

Passchier, C. W. 1987b. Stable positions of rigid objects in non-coaxial 
flow--a study in vorticity analysis. J. Struct. Geol. 9, 679-690. 

Passchier, C. W. 1988a. Analysis of deformation paths in shear zones. 
Geol. Rdsch. 77,309-318. 

Passchier, C. W. 1988b. The use of Mohr circles to describe non- 
coaxial progressive deformation. Tectonophysics 149, 323-338. 

Passchier, C. W. 1990a. Reconstruction of deformation and flow 
parameters from deformed vein sets. Tectonophysics 180, 185-199. 

Passchier, C. W. 1990b. A Mohr circle construction to plot the stretch 
history of material lines. J. Struct. Geol. 12, 513-515. 

Passchier, C. W. 1991. The classification of dilatant flow types. J. 
Struct. Geol. 13, 101-104. 

Passchier, C. W. & Urai, J. L. 1988. Vorticity and strain analysis using 
Mohr diagrams. J. Struct. Geol. 10,755-763. 

Platt, J. P. & Behrmann, J. H. 1986. Structures and fabrics in a crustal- 
scale shear zone. Betic Cordillera, S. E. Spain. J. Struct. Geol. 8,15-- 
33. 

Ramsay, J. G. & Huber, M. I. 1983. The Techniques of Modern 
Structural Geology, Volume 1: Strain Analysis. Academic Press, 
New York. 

Schmid, S. M. & Casey, M. 1986. Complete fabric analysis of some 
commonly observed quartz c-axis patterns. In: Mineral and Rock 
Deformation: Laboratory Studies--The Paterson Volume (edited by 
Hobbs, B. E. & Heard, H. C.). Am. Geophys. Un. Geophys. 
Monogr. 36, 263-286. 

Talbot, C. J. 1970. The minimum strain ellipsoid using deformed 
quartz veins. Tectonophysics 9, 46-76. 

Toriumi, M. 1982. Strain, stress and uplift. Tectonics 1, 57-76. 
Treagus, S. H. 1990. The Mohr diagram for three dimensional recipro- 

cal stretch vs rotation. J. Struct. Geol. 12, 383-395. 
Truesdell, C. 1954. The Kinematics of Vorticity. Indiana University 

Press, Bloomington, Indiana. 
Vissers, R. L. M. 1989. Asymmetric quartz c-axis fabrics and flow 

vorticity: a study using rotated garnets. J. Struct. Geol. 11,231-244. 
Wallis, S. R. & Banno, S. 1990. The Sambagawa Belt: trends in 

research. J. metamorph. Geol. 8, 393-399. 
Watanabe, T. & Kobayashi, H. 1984. Occurrence of lawsonite in 

pelitic schists from the Sanbagawa belt, the Asemigawa region, 
central Shikoku. J. metamorph. Geol. 2,365-369. 

White, S. H. 1976. The effects of strain and microstructure fabrics and 
deformation mechanisms in quartzite. Phil. Trans. R. Soc. Lond. 
A283, 69-86. 


